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ABSTRACT _

The principal gamma-ray-emitting radioisotopes produced in the body
of astronauts by cosmic-ray bombardment which have half-lives long enough
to be useful for radiation dose evalustion are 7Be, 22Na, and 2%Na. The
sodium isotopes were measured in the preflight and postflight urine and
feces, and those feces specimens collected during the manned Apollo
missions, by analysis of the urine salts and the raw feces in large
crystal multidimensional gamma-ray spectrometers. The ’Be was chemically
separated, and its concentration measured in an all NaI(Tl), anticoincidence

shielded, scintillation well crystal.

The overall sensitivity of the experiment was reduced by almost-all
variables such as low concentrations of excreted cosmogenic radionuclides,
high concentrations of injected radionuclides, low sample sizes, long
delay periods before analysis, and uncertain excretion rates. The
astronaut radiation dose in millirads, as determined by this technique,
for the Apollo 7, 8, 9, 10, 11, 12, and 13 missions was 330, 160, <315,
870 + 550, 31, 110, and <250 respectively. In view of these limitations
this technique would be best applied to cases of unusually high exposures ,
such as that encountered from solar flares.

INTRODUCTION

With the advent of space flight, it has
become necessary to determine the radiation
dose to man from exposure to the galactic, Van
Allen, and solar flare particles. The high-
energy galactic portion of the spectrum is
fairly constant and has a relatively low inten-
sity. The high iptensity Van Allen radiation
is of medium energy and localized in space.
However, the solar radiation is not so predic-
table, and the flux and energy of particles
from the sun can vary tremendously depending on
solar activity. Since high levels of radia-
tion exposure are possible, radiation dosimetry
which will properly define radiation exposures
is essential in space research programs. Dos-
imetry methods employed thus far, such as nuc-
lear emulsion films, thermoluminescent dosim-
eters, and ionization gauges provide very use-
ful indirect methods for estimating radiation
dose but are subject to limitations. They
measure only a surface exposure at & specific
point(s) in the spacecraft or on the astronaut's
body rather than an integral whole body expos-
ure, and they have a limited sensitivity to
large varistions in particle energy. Some of
the inherent limitations of these external dos-
imeters are avoided by using the induced radio-

(a)

activity in the body of an astronaut as a meas-
ure of his radiation exposure. During a space
flight, radionuclides are produced throughout
the entire body of an astronaut, and the pro-~
duction rates are related directly to the cosmic
particle flux within the body. The absolute and
relative amounts of the various radionuclides
bear a direct relationship to the intensity and
energy spectrum of the particles which are doing
the biological damage.

The radiation dose received from the cosmic
particles can be determiped from the quantities
of induced radionuclides'l=%), The amounts of
these induced activities can be determined by
direct measurement, i.e., whole body counting of
the astronaut, or by indirect measurement, such
as counting the radionuclides excreted in the
feces and urine. The latter approach was used
for evaluation of radiation activation during
the course of the manned Apollo missions.

The principal gamme-ray-emitting radioiso-
topes produced in the body by cosmic-ray bom-~
bardment are ’Be (t%=53 day), 11¢ (t4=20.5 min),
13y (£1=9.96 min), 22Ne (t3=2.60 yr), end 2b4Ng
(t%=15.0 hr). The primary mode of production
of 7Be and !lC is the spallation of carbon,
nitrogen, and oxygen in the body. The 13N comes
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principally from the spallation of nitrogen

and oxygen, the 22Na from the spallation of
sodium, phosphorus, and calcium, and the 2%“Na
from the neutron activation of natural sodium.
Of these, !!C and !3N are too short-lived to
be measured by any method other than a direct
determination, and this direct counting would
have to be done as soon as possible after re-
covery. This is unfortunate, since these
radioisotopes are produced in the largest abun-
dance. The radionuclides 7Be, 22Na, and 24Na
are, however, sufficiently long-lived to facil-
itate their use in making dose estimates from
measurement of their quantities in urine and
fecal samples.

Other radioisctopes were also expected to
be present in the bicassay samples. In addi-
tion to the aforementioned cosmogenic radio-
nuclides, measurements of naturally present
“0K; normally occurring ’Be, 22Na, and 137¢s;
and 3lCr and 5%e which were injected for med-
ical studies were also made. Another radio-
isotope, 80Co, was detected and quantitatively
measured in some of the specimens. Corrections
to the cosmogenic 7Be and 22Nas must be made to
account for the quantities of these radioiso-
topes normally occurring in the body because of
fallout, food intake, and other ingestion pro-
cesses. The quantities of the naturally occur-
ing *9K and the injected 3lCr and 5%e in the
bicassay samples could serve as biological
tracers of various changes of metabolic pro-
cesses during the course of a mission.

In previous studies, induced radioactivity
to radiation dose relationships have been es-
tablished for the radionuclides 7Be, 22Na, and

Na as a function of e?ergy for proton bombard-
ment of muscle-»tissue(2 . From these relation-
ships and from the ratios in which these radio-
nuclides are produced, the "effective proton
energy" of cosmic radiation incident on an as~
tronaut can be determined. This allows the
direct estimation of the whole body radiation
exposure received by astronauts from measure-
ments of the radionuclides produced in their
bodies.

EXPERIMENTAL

Preflight and postflight urine and feces
and those feces specimens collected in flight
were analyzed. Due to the quarantine period
following lunar landing missions, all samples
were not immediately available for analyses,

thus allowing the short-lived radionuclides to
decay. The urine specimens which were of
small volume were solidified prior to analy-
sis by the addition of 250k to 25 ml or less
of the raw urine in order to form & standard
counting geometry. Any samples of initial
volume greater than 25 ml were treated by re-
peatedly boiling to dryness with nitric acid
to destroy the organic matter present. The re-
maining salts were counted in large crystal
multidimensional gamma-ray spectrometers 5-7)
for determination of 22Na, 2%a, 40k, Slcr,
59Fe, 6000, and 137Cs. The salts were then
redissolved in a weak HCl solution and diluted
to known volume. An aliquot of this solution
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was taken for neutron activation analysis to
determine the concentrations of stable elements
in the sample. The remainder of the solution
was reduced in volume to approximately 15 ml
and transferred to a 100 ml polyethylene cen-
trifuge tube. Approximately 5 mg of Bett car-
rier and 20 mg of Fe**t carrier were added,
and the solution was neutralized with concen-
trated NH,OH. After centrifugation the super-
natant solution was discarded. Thirty-five ml
of 3 N NaOH were added to the remaining pre-
cipitate and stirred vigorously until well
mixed. After centrifugation the supernatant
liquid was transferred to a clear centrifuge
tube, saturated with NH4,Cl, and heated in a
water bath. If necessary, additional NHyC1
was added until a Be(OH), precipitate settled
from the sclution. The sclution was then cen-
trifuged, and the supernatant fraction was
discarded. The resulting quantitative precip-
itate containing the 7Be activity was counted
in an all NaI(T1) anticoincidence shielded,
T-inch diameter scintillation well crystal in
the absence of all interfering activities. This
was necessary in order to measure the rela-—
tively small quantities of Be present.

Fecal samples were thoroughly mixed in
their collection bags to ensure homogeneity of
the specimens. A small corner was cut off each
bag and aliquots were extruded into standard
counting geometry containers for measurements
on multidimensional gamma-ray spectrometers to
meagsure the radioisotopes 22Na, “OK, 51Cr, 59Fe,
6OCo, and 137cs. Separate aliquots were wet
ashed with nitric acid and hydrogen peroxide
to destroy the organic matter present. The re-
sulting salts were dissolved in dilute nitric
acid, and the same procedure as sbove was fol-
lowed for separation of the 7Be activity.

A luminous material composed of 147ppm
microspheres mixed with a scintillator is used
extensively in the spacecraft in acrylic switch
tips and sighting figures used in docking man-
euvers. Because of the high rejection rate of
switch tips caused by promethium leaks, there
is some concern about the possible presence of
147Pm in the weightless space capsule environ-
ment. For the later missions, approximately 10
mg of mixed rare earths were added to the feces
prior to wet ashing. These were to serve as
carriers for l"‘7Pm, which could possibly have
been ingested by the crew members. This rare
earth fraction was separated from the beryllium
fraction after the initial NH,OH precipitation
by dissolving the precipitate in approximately
8 ml of 3M HCl and adding 2 ml of L9 percent HF.
Centrifugation separated the rare earth precip-
itate from the beryllium in the supernatant so-
lution. The rare earth fraction was then dis-
solved in two parts concentrated HNO3 and three
parts saturated boric acid solution and reprecip-
itated with NH4OH. After centrifugation and de-
cantation, the precipitate was dissolved in di-
lute HC1l; and saturated oxalic acid solution was
added to precipitate the rare earth oxalates.
The solution was centrifuged; the supernatant so-
lution was decanted; and the quantitative precip-
itate was washed with alcohol, transferred to a
l-inch diameter stainless steel dish and counted
in an end window, gas flow beta counter for the
measurement of 1%7pm, °




RESULTS

The results of the individual determinations
are given in Tables I through IV. All data have
been normalized to a gram of feces, a milliliter
of urine, or a gram of the respective stable
element as determined by a technique, of instru-
mental neutron activation analysis 8) All data
have been decsy corrected to the time of splash-
down of each respective mission. The results
of all the radionuclide measurements in the
excrets are given in the tables although only
the concentrations of the cosmogenic radionuclides
7Be, 22Na, and 2%Na are of importance for the
subject matter of this communication. The
various samples in the tables are listed by the
letters A, B, and C or LMP, CMP, and CDR to
identify an individual astronaut. Those samples
listed by numbers are unidentified and arbitra-
rily coded. The collection time for each speci-
men is given as Pre-, In-, or Post-flight unless
more detail is known, in which case a number
refers to elapsed time into the mission in hours,
the letter F followed by & number indicates that
nunber of days prior to flight, post+0 refers
to the first voiding after splashdown, post+l
is the first 24 hour collection after splashdown
and day 2 is the following day after splashdown.
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TABLE Il

RADIONUCLIDES IN FECES FROM APOLLO ASTRONAUTS
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TABLE IV
RADIONUCLIDES IN URINE FROM APOLLO ASTRONAUTS

ACTIVITY IN DISINTEGRATIONS/MINUTE/GRAM
INERT ELEMENT ON DAY OF SPLASHDOWN

SAMPLE FLIGHT

MISSION  IDENTIFICATION  PERIOD  Znalgha  “Nagha Yo co Bleog cs
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u P PRE Q51040 0. 070,12+ 10
1 COR PRE 617082 108
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1 COR POST 043023 2 on0.30- 10°
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12 P F-30 wsea1n- 10"
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12 cMP POSTH Lo 10
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The average values of the cosmogenic radio-
nuclide concentrations in each basic flight per-
iod are summarized in Table V according to the
various methods of normalization. The increase
in the activities from preflight to inflight
and postflight periods should be indicative of
the exposure to cosmic radiation, The concentra-
tions of each redionuclide increase rather
regularly for the Apollo 7 mission regardless of
the method of normalization. However, the fecal
data for the Apollo 8 mission are quite irregular,
with only the urine data demonstrating increases
in the cosmogenic radionuclides. The Apollo 9
and 13 missions show increases in the ’Be concen-
tration in the urine but demonstrate decreases
in the 22Na concentrations while the reverse is
true for Apollo 11. Regular increases are
shown for Apollo 10 and 12,

The increases in cosmogenic radiocactivity
from preflight levels to those after exposure to
the space environment are almost certainly due
to cosmic particle activation. Equating the
magnitude of the increase with the radiation dose
delivered by the particles is still fairly
difficult, particularly when the dose is quite
small as has been the case on all manned Apollo
missions thus far. Concentrations normalized to
the unit mass or volume of excreta are subject
to variation in the bhiological dilution of the
specimen., Concentrations normalized to the unit
mass of stable element in the feces are also
subject to varisastions in the quantities of
unmetabolized elements passing through the
gastrointestinal tract. Only the quantities of
radionuclides in the urine normalized to the
amount of stable element present can be ex-
pected to be reasonably representative of the
specific activity in the whole bcdy since the
urine contains only metabolized material.
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Indeed, it is necessary to make some assump-
tions regarding the percentages of the body bur-
den of an element excreted in the feces or
urine, the relative dilution factors of feces
and urine, and the "contamination" of feces by
unmetabolized elements in order to compare the
data with the experiment?l re?ults for proton
irradiated muscle tissye'ls 2 , proton irradiated
radiotherapy patients 3 , and neutron irradiated
radiotherapy patients (u) In this manner, the
average effective proton energy incident on the
astronauts and the radiation dose received by
them can be estimated, The details of these
calculations will be omitted here since they are
given elsewhere 9-12 The results indicate an
average effective proton energy of 38-40 MeV
incident on the Apollo 7 mission astronauts and

<38 MeV on the Apollo 8 mission astronauts.
Radiation doses of 480 + 310, <315, 870 + 550,
<480, and <250 millirads for the Apollo T, 9,
10, 12, and 13 missions respectively are calcu-~
lated,

Since the specific activity of the cosmo-
genic radionuclides in the urine should be a
more accurate representation of the whole body
burden of induced radioactivity, the specific
activity of the 22Na in the postflight urine of
astronauts is compared to the specific activity
of 22§a in the urine of radiotherapy patients
who have received a known radiation dose. This
comparison leads to estimated cosmic radiation
doses received by the astronauts on the Apollo T,
8, 11, and 12 missions of 330, 160, 31, and 110
millirads respectively. It should be pointed out
here that the uncertainty of the data given in
Table V, and hence of these results, is quite
large in some instances.

DISCUSSION

In principle the relationships between in-
duced activity and radiation dose are straight-
forward. The probability for production of a
certain isotope in the body of an astronaut is
basically & function of the energy of the proton.
Similarly, the radiation dose from a cosmic proton
is also a function of its energy, and therefore,
the induced activity is logically related to the
radiation dose. Such relationships have been
empiricall{ deSermined for several different
situstions‘17% , and it remains only to measure
the quantities of induced radionuclides in a
particle irradiated person to determine the dose
he received.

In practice, however, the procedure is not
quite as simple as that just described. A cali-
brated whole-body counter is required to deter-
mine the guantities of induced radionuclides,
and a high sensitivity-low background instrument
would be required to measure the small quantities
of radionuclides induced by the low levels of
cosmic radiation encountered on a normal space
flight. In lieu of the availability of a suitable
whole-body counter, an indirect approach such as
that used in this work can be applied. The prin-
cipal limitations to this method have already
been touched upon above, Only a small and
uncertain fraction of the induced activity is
eliminated in the excreta. Thus only the



TABLE V

AVERAGE RADIONUCLIDE CONCENTRATIONS IN EXCRETA FROM APOLLO ASTRONAUTS

NORMALIZED RADIOCACTIVITY IN DISINTEGRATIONS PER MINUTE

FLIGHT

ACTIVITY PERIOD APOLLO 7  APOLLO 8 APOLLO 9 APOLLO 10 APOLLO 11 APOLLO 12 APOLLO 13
7Be/g Feces Pre 1.12 3.25
"Be/g Feces In 1.59 1.78 1.25 0.36 0.10 2.79 0.98
"Be/g Feces Post 2,94 2.33
ZZNa/g Feces Pre 0.025
22Na/g Feces In 0.001k4 0.0014 0.015 0.0007 0.0039
22Na/g Feces Post 0.0026 0.040
22Na/g Na in In 0.26 0.26 7.8

Feces
22§a/g Na in Post 2.8

Feces
7Be/ml Urine Pre 0.159 0.01k 0.264 0.233
7Be/ml Urine Post 0.755 1,20 0.055 0.077 0.051 0.68
228a/ml Urine Pre 0.0005 0.0004 0.0003 0.0003 0.0013
22Na/ml Urine Post 0.0038 0.0009 0.0002 0.0009 0.0008 0.0016
2%Na/ml Urine Post 0,04
22Na/g Na in Pre 0.17 0.08

Urine
22Na/g Na in Post 3.2 1.6 0.30 1.1

Urine
24Na/g Na in Post 20

Urine

specific activity of an induced radioisotope in
the urine can be extrapolated to the whole body
burden with a reasonable degree of accuracy.

While the efficiency of low-level sample
counters is routinely several orders of magnitude
higher than whole-body counters, the small frac-
tion of the total body activity in any bioassay
sample reduces the sensitivity of a specimen
measurement to the point where it is little
better than that of a whole-body count. ' To com-
plicate the situation in this work even further,
there is a large demand for aliquots of post-
flight urine specimens from the astronauts and
typically only 10% or less of a 2h-hour collection
has been available for radionuclide concentration
measurements. An additional complication in the
case of non-lunar-landing missions (Apollo 13
excepted) was the injection of radioisotopes into
the astronauts for medical studies. Although
these isotopes were not the same as the cosmo-
genic radionuclides measured, their presence in
the excreta lowered the overall accuracy of the
measurements. Finally, the quarantine require-
ments of the lunar landing missions caused a
delay in the analysis of postflight specimens
which allowed substantial decay of the radio-
nuclides present. These factors all contribute
to the reduced accuracy and sensitivity of the
measurements reported herein, In an effort to
improve the situation, a high sensitivity com-
bination whole-body counter and sample counter
has been proposed which could be rapidly utilized
after a mission (even onboard the recovery vessel)
to make accurate measurements of the whole body
burden of radionuclides in the astronauts. The
combination of direct measurement of whole body
burdens of radionuclides and the early measure-
ment of relatively large quantities of excreta
should make much more accurate dose estimates
possible.
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This technique for measurement of radiation
dose should be perfected during routine space
missions -so that ‘*in the event of an unusually
high exposure, such as might be expected from a
solar flare, an accurate determination of the
radiation dose can be obtained. This situation
would be ?nolo§?us to those nuclear criticality
accidents' 137! where conventional dosimetry
techniques were saturated and induced radio-
activity was measured to interpret the radiation
dose received by the exposed individuals.




10.

11.

12.

13.

1k,

5.

REFERENCES

R. L. Brodzinski, N. A. Wogman, and R. W. Perkins, "Induced Radionuclides
in Astronauts," NASA~CR-73252 (1968).

R. L. Brodzinski, N. A. Wogmen, and R. W. Perkins, "Cosmic-Ray-Induced
Radioactivity in Astronauts as a Measure of Radiation Dose," Space Life
Sciences 2, 69 (1969).

R. L. Brodzinski, N. A. Wogman, J. C. Langford, and R. W. Perkins,
"Radioactivity in the Urine of Proton Irradiated Patients," Unpublished
data, Battelle Memorial Institute, Pacific Northwest Laboratories,
Richland, Weshington.

R. L. Brodzinski, "Radioactivity in the Blood and Urine of Neutron
Irradiated Radiotherapy Patients," Unpublished data, Battelle Memorial
Institute, Pacific Northwest Laboratories, Richland, Washington.

R. W. Perkins, "An Anticoincidence Shielded Multidimensional Gamma-Ray
Spectrometer,” Nucl. Instr. and Methods 33, 71 (1965).

N. A. Wogman, D. E. Robertson, and R. W. Perkins, "A Large Detector
Anticoincidence Shielded Multidimensional Gamma-Ray Spectrometer," Nucl.
Instr. and Methods 50, 1 (1967).

N. A. Wogman, R. W. Perkins, and J. H. Kaye, "An All Sodium Iodide
Anticoincidence Shielded Multidimensional Gamma-Ray Spectrometer for
Low-Activity Samples," Nucl. Instr. and Methods Tk, 197 (1969).

L. A. Rancitelli, J. A. Cooper, and R. W. Perkins, "The Multielement
Analysis of Biological Material by Neutron Activation Analysis and
Direct Instrumental Techniques," Proceedings of the 1968 International
Conference: Modern Trends in Activation Analysis, Gaithersburg,
Maryland (1969).

R. L. Brodzinski, H. E. Palmer, and L. A. Rancitelli, "The Measurement
of Radiation Exposure of Astronauts by Radiochemical Techniques,"
April 8, 1969 Through June 30, 1969, BNWL-1183 1 (1969).

R. L. Brodzinski, L. A. Rancitelli, and W. A. Haller, "The Measurement
of Radiation Exposure of Astronauts by Radiochemical Technigues,"
October 6, 1969 Through January 4, 1970, BNWL 1183 3 (1970).

R. L. Brodzinski, L. A. Rancitelli, and W. A. Haller, "The Measurement
of Radiation Exposure of Astronauts by Radiochemical Techniques,"
January 5, 1970 Through April 5, 1970, BNWL 1183 L (1970).

R. L. Brodzinski and W. A. Haller, "The Measurement of Radiation
Exposure of Astronauts by Radiochemical Techniques,” April 6, 1970
Through July 5, 1970, BNWL 1183 5 (1970).

"Dosimetry Investigation of the Recuplex Criticality.Accident,” Health
Physies 9, 757 (1963).

R. W. Perkins and L. J. Kirby, "Rediological Chemistry Associated with
the Hanford Criticality of April T, 1962," USAEC Report HW-76823 (1962).

"pccidental Redistion Excursion at the Y-12 Plant," Y-1234 (1958).

167






